

Amino acid requirements and updated recommendations for weaned piglets based on a literature review

Sophie Goethals, Jordi Rijpert, Wouter Spek, Sam Millet, Paul Bikker

CVB Themamiddag Voederwaardering Varkens 2023 1 en 2 juni 2023

Outline

- Background
- Requirement of SID lysine (meta-analysis)
- Updated recommendations for SID lysine
- Requirement (literature review) and updated recommendations for SID EAA other than lysine
- Conclusions and future research perspectives

Background

PPS project 'Voeding op maat'

reduce nitrogen emission in production animals through improved nutrition

growth
performance

N-excretion

below
requirement

above
requirement

REQUIREMENT

= minimum supply of a nutrient to maximize performance

- Feed intake capacity
- Protein deposition capacity

genotype sex

age

RECOMMENDATION

- Animal's requirement
- Economic
- Health (risk for diarrhea)
- Environmental, legislation

Background

AA recommendations of **growing and finishing** pigs: updated in **2018**AA recommendations for **weaned piglets** have not been updated since **1996**

- Current recommendations only provided for Lys, Met + Cys, Thr and Trp
- AA requirements may have changed ≈ genetics, feeding, management
- Low protein diets
- Increased availability crystalline AA

Background

Factorial growth model

lysine requirement

Empirical approach: dose-response studies

lysine requirement: meta-analysis requirements other EAA: short literature review

Linear-plateau model

Outline

- Background
- Requirement of SID lysine (meta-analysis)
- Updated recommendations for SID lysine
- Requirement (literature review) and updated recommendations for SID EAA other than lysine
- Conclusions and future research perspectives

MATERIALS AND METHODS

Selection criteria:

- BW range: 5-30 kg
- Dose-response technique: at least 4 levels of lysine
- Animal performance response criteria (ADG, ADFI, FCR or G:F)
- Feed ingredient/nutrient composition of diets
- Lysine should be first limiting nutrient

344 papers

86 papers

37 papers
58 experiments
287 treatment means

24 papers
41 experiments
206 treatment means

RESULTS

MATERIALS AND METHODS

Y-axis: - ADG - ADFI - G:F

Calculations:

- energy level: NE (DE, ME, NE, EW)
 based on conversion factors (Noblet et al., 2022)
- lysine level: SID lysine (SID, AID, analyzed total, calculated total)
 based on total lysine levels reported in the paper and CVB SID digestibility coefficients
- crude protein level: SID crude protein (calculated crude protein, analyzed crude protein) based on total crude protein level reported in the paper and CVB SID digestibility coefficients

RESULTS

MATERIALS AND METHODS

Linear-plateau model

- ⇒ Lysine is increased by graded levels of L-lysine HCL and/or protein rich feed materials a varying (increase) or constant SID Lys/CP ratio
- ⇒ Either or not in combination with the addition of constant or graded levels of one, two or more crystalline EAA

a constant or varying (decrease) SID EAA/Lys ratio

⇒ Lysine must be first limiting factor, other nutrients should be non-limiting

MATERIALS AND METHODS

⇒ Lysine is increased by graded levels of L-lysine HCL and/or protein rich feed materials

a constant or varying (increase) SID Lys/CP ratio

Item	Content in body protein ^d	Maximum efficiency $(k_{AA})^e$
Protein	1.0000	0.81
Lysine	0.0696	0.72
Methionine	0.0188	0.64
Cystine	0.0103	n.a.
Methionine + cystine	0.0291	0.51
Threonine	0.0370	0.61
Tryptophan	0.0095	0.57
Isoleucine	0.0346	0.60
Leucine	0.0717	0.76
Valine	0.0467	0.71
Phenylalanine	0.0378	0.82
Tyrosine	0.0286	n.a.
Phenylalanine + tyrosine	0.0664	0.75
Histidine	0.0279	0.93
Arginine	0.0626	1.54

Van Milgen et al., 2008

160 g CP in diet SIDC CP = 85% (assumption) 160 g CP x 85% = 136 g SID CP

136 g SID CP in diet max efficiency = 81% 136 q SID CP x 81% = 110 q SID CP

110 g SID CP will be incorporated in body protein 6.96% is the ratio of lysine in body protein 110 g SID CP x 6.96% = 7.66 g SID Lys

7.66 g SID Lys will be incorporated in body protein

Max efficiency = 72%

7.66 g SID Lys/72% = 10.6 g SID Lys

10.6 g SID Lys in diet is required to make optimal use of the 160 g CP provided by the diet for protein accretion

EXAMPLE

In a diet with a CP content of 160 g/kg diet

- Lys is limiting protein accretion up to a level of 10.6 g SID Lys/kg
- When SID Lys level > 10.6 g/kg diet => Lys is probably not used as essential AA

MATERIALS AND METHODS

⇒ Lysine is increased by graded levels of L-lysine HCL and/or protein rich feed materials a constant or varying (increase) SID Lys/CP ratio

Item	Content in body protein ^d	Maximum efficiency $(k_{AA})^e$	
Protein	1.0000	0.81	
Lysine	0.0696	0.72	
Methionine	0.0188	0.64	
Cystine	0.0103	n.a.	
Methionine + cystine	0.0291	0.51	
Threonine	0.0370	0.61	
Tryptophan	0.0095	0.57	
Isoleucine	0.0346	0.60	
Leucine	0.0717	0.76	
Valine	0.0467	0.71	
Phenylalanine	0.0378	0.82	
Tyrosine	0.0286	n.a.	
Phenylalanine + tyrosine	0.0664	0.75	
Histidine	0.0279	0.93	
Arginine	0.0626	1.54	

Van Milgen et al., 2008

$\frac{100}{0.81}$	\Rightarrow	123.5 g of digestible protein (SID CP)
$\frac{6.96}{0.72}$	\rightarrow	9.7 g of digestible lysine (SID Lys)

$$\frac{9.7}{123.5} = \mathbf{0.0783}$$

Theoretical max ratio of SID LYS:SID CP?

SID Lys:SID CP ratio

- NEAA or nitrogen itself could be first limiting
- For 41 of 58 experiments, all dietary treatments had a ratio < 0.0783
- Ratio < 0.0783 is selection criterium

MATERIALS AND METHODS

⇒ Either or not in combination with the addition of constant or graded levels of one, two or more crystalline EAA a constant or varying (decrease) SID EAA/Lys ratio

- Estimation of AA profile requires many assumptions
- Very few studies (17) have assumed ideal protein profile
- No selection criterium as such

MATERIALS AND METHODS

Potential outcome dose-response studies

- Exceeding optimal lysine requirement;breakpoint = requirement?
- Other limiting factor?

- Lysine requirement at least the highest tested Lys level?
- Other limiting factor?

Constant

- Tested lysine levels above limiting lysine concentration?
- Other limiting factor?

RESULTS

Linear — Quadratic

G:F and ADG

No linear-plateau model fit Response: mainly linear increase

ADFI

Not considerably affected by lysine content

RESULTS

Individual experiments (17 of 41 experiments assumed to have ideal protein profile)

reference ^{1,2}	ce ^{1,2} response ³ model parameters			estimated Lys requirement ⁴ (g SID Lys/MJ NE)			
		Jinear	quadratic		linear-plate	au	
		· ·	quadratic		Distance Proces		
		slope	term		breakpoint	plateau	
Nieto Exp1 2015	lin&quad&ling		-0.415	0.22	0.861	0.522	0.861
Fontes Exp1 2005	lin&quad&linp	0.2	-0.896	0.36	1.048	0.639	1.048
Lenehan_P1_Exp1_2004	lin&quad&ling		-0.825	0.32	1.108	0.649	1.108
Kendall_Exp5_2008	lin&quad&ling		-0.531	0.29	1.197	0.672	1.197
Nemechek_Exp3_2012	lin&quad&linp		-0.91	0.43	1.342	0.770	1.342
Nunes Exp1 2008	lin&quad&ling		-1.007	0.39	1.37	0.787	1.370
Nemechek_Exp4_2012	lin&quad&linp		-0.67	0.29	1.389	0.832	1.389
Oliveira P2 Exp1 2006		0.39	-	-		-	>1.091
Nam_Exp2_1994	lin&-&-	0.3	-	_	-	-	>1.094
Braga_overall_2018	lin&-&-	0.23	-	-	-	_	>1.119
Schneider P1 Exp1 2010	lin&guad&-	0.18	-0.473	_	-	-	>1.158
Nam Exp1 1994	lin&-&-	0.07	-	_	-	-	>1.172
Gatel Exp1 1992	lin&-&-	0.22	-	-	-	-	>1.205
Schneider P1 Exp2 2010	lin&-&-	0.21	-	_	-	_	>1.235
Kendall_Exp2_2008	lin&-&-	0.29	-	-	-	_	>1.242
Lenehan P2 Exp1 2003	lin&-&-	0.2	_	_	_	_	>1.247
Kendall_Exp3_2008	lin&-&-	0.14	-	-	-	_	>1.251
Millet Exp1 2020	lin&quad&-	0.34	-0.378	-	-	-	>1.255
Kendall Exp1 2008	lin&-&-	0.22	-	_	-	-	>1.262
Fruge_Exp1_2017	lin&-&-	0.31	-	_	-	-	>1,299
Yi_Exp1_2006	lin&-&-	0.08	-	-	-	-	>1.317
Kahindi P1 Exp2 2014		0.31	-0.244	-	-	-	>1.327
Kahindi P1 Exp1 2014		0.24	-	-	-	-	>1.327
Kendall_Exp4_2008	lin&guad&-	0.2	-0.506	-	-	-	>1.336
Jones Exp3 2014	lin&-&-	0.29	_	-	-	-	>1.362
Jones Exp4 2014	lin&-&-	0.32	-	-	-	-	>1.363
Jin_Exp1_1998	lin&guad&-	0.34	-0.433	_	-	_	>1.37
Jones Expl 2014	lin&-&-	0.31	-	_	-	_	>1.376
Jones Exp2 2014	lin&-&-	0.36	-	-	-	-	>1.376
Nemechek Exp1 2012	lin&guad&-	0.29	-0.437	_	-	_	>1.39
Clark Exp1 2017	lin&-&-	0.26	-	_	-	-	>1.506
Nichols Exp1 2018	lin&-&-	0.18	-	_	-	-	>1.547
Moretto Exp1 2000	-&quad&-	-	-0.943	-	-	_	-
Moretto_Exp2_2000	-&quad&-	-	-0.911	-	-	-	_
Urvnek Exp3-4 2003	-&guad&-	_	-0.581	_	-	_	_
Dean Exp1 2007	-8-8-	-	-	-	_	-	•
Gatel_Exp2_1992	-&-&-	_	-	_	-	_	-
Kim overall 2011	-8-8-	_	_	_	-	_	•
Nemechek Exp2 2012	-8-8-	-	-	-	-	-	
Urynek Exp1 2003	-8-8-	_	-	_	-	_	•
Urynek_Exp2_2003	-&-&-	_	-	-	-	_	-

Linear: 32

Linear & quadratic: 13

Linear & quadratic & linear-plateau: 7

Most studies showed linear increase (without reaching plateau)

in tested lysine range

Estimation Lys requirement (g SID Lys/MJ NE)	Number of studies
> 1.0	(14/17) 82%
> 1.1	(13/15) 87%
> 1.2	(12/14) 86%
> 1.3	(10/11) 91%
> 1.4	(2/2) 100%
> 1.5	(2/2) 100%

CONCLUSION

- **Not possible to determine an accurate value** for the SID lysine requirement of weaned piglets to achieve maximal growth performance
- Analysis of **pooled data** and **individual** dose-response experiments predominantly showed continous **linear increase in G:F and ADG** within the tested SID lysine range
- The results indicate that the SID lysine requirement is at least 1.3 g SID lysine/MJ NE or higher.

Outline

- Background
- Requirement of SID lysine (meta-analysis)
- Updated recommendations for SID lysine
- Requirement (literature review) and updated recommendations for SID EAA other than lysine
- Conclusions and future research perspectives

Updated recommendations for SID lysine

Requirement is > 1.3 g SID lysine/MJ NE

$$\frac{9.7}{123.5} = 0.0783$$

Max ratio of SID LYS:SID CP?

Optimal crude protein level in relation to lysine level	Optimal lysine level in relation to crude protein level		
Scenario 1: 1.50 g SID Lys/MJ NE => 225 g CP/kg diet	Scenario 2: 170 g CP/kg diet => 11.3 g SID Lys/kg diet		

Updated recommendations for SID lysine as function of protein level

Current recommendations, but assumptions of SIDC CP and optimal SID Lys to SID CP ratio should be further investigated

	SIDC CP = 90%							
g CP/kg diet	g SID CP/kg diet	g SID Lys/kg diet						
160	144	11.3						
170	153	12.0						
180	162	12.7						
190	171	13.4						
200	180	14.1						
210	189	14.8						
220	198	15.5						

In bold: SID Lysine values below the estimated lysine requirement of piglets (under the assumption of a lysine requirement of 1.3 g standardized ileal digestible (SID) lysine/MJ NE and 10 MJ NE/kg diet)

Updated recommendations for SID lysine as function of protein level

Current recommendations, but assumptions of SIDC CP and optimal SID Lys to SID CP ratio should be further investigated

	SIDC C	P = 90%	SIDC C	P = 85%	SIDC CP	= 80%
g CP/kg diet	g SID CP/kg diet	g SID Lys/kg diet	g SID CP/kg diet	g SID Lys/kg diet	g SID CP/kg diet	g SID Lys/kg diet
160	144	11.3	136	10.6	128	10.0
170	153	12.0	145	11.3	136	10.6
180	162	12.7	153	12.0	144	11.3
190	171	13.4	162	12.6	152	11.9
200	180	14.1	170	13.3	160	12.5
210	189	14.8	179	14.0	168	13.2
220	198	15.5	187	14.6	176	13.8

In bold: SID Lysine values below the estimated lysine requirement of piglets (under the assumption of a lysine requirement of 1.3 g standardized ileal digestible (SID) lysine/MJ NE and 10 MJ NE/kg diet)

Empirical data versus Factorial model

- Value for efficiency of AA utilization
- SIDC for growing pig might differ from piglets
- (Over or under)-estimation of maintenance energy
- Other ... ?

> 1.3 g SID Lys/MJ NE

VS

Outline

- Background
- Requirement of SID lysine (meta-analysis)
- Updated recommendations for SID lysine
- Requirement (literature review) and updated recommendations for SID EAA other than lysine
- Conclusions and future research perspectives

MATERIALS AND METHODS

Literature review: Reviews + national recommendations Recent dose-response studies

Linear-plateau model

MATERIALS AND METHODS

- RESPONSE PARAMETER

maximize **ADG** (especially for AA involved in voluntary feed intake such as **Val and Trp**, lower AA levels could be sufficient to maximize G:F compared to the level that maximizes feed intake and consequently daily gain)

- STATISTICAL MODEL

Linear-plateau model is mostly best-fitting model. However, for AA negatively affecting performance at excess levels (e.g. **Leu**), quadratic models may show a better fit to the data

- AA INVOLVED IN IMMUNE RESPONSE

For Met + Cys, Trp and Thr, the amino acid requirement might be higher under challenged health conditions

MARGINAL EFFECT OF AA SUPPLY 10% BELOW (AND ABOVE) THE REQUIREMENT ESTIMATE*

Deficiency of Ile has higher negative impact on growth performance compared to deficiency of Leu *Marginal effect depends on statistical model, not easy to compare and use in the review

	BSAS (2003)	NRC (2012)	Tybirk et al. (2021)	Gloaguen et al. (2013b)	CVB (1996)	van der Peet-Schwering and Bikker (2018)
	UK	USA	DK	FR	i NL	
					 	Starter diet (25-50 kg)
Methionine + Cysteine	59	55	54	60	61	60
Threonine	65	59	62	65	62	66
Tryptophan	19	16	21	22	20	20
Isoleucine	58	51	46-48	52	! !	53
Valine	70	63	62-64	70	! !	67
Leucine	100	100	86-90	101	i !	100
Histidine	34	34	28-29	31	i !	32
Phenylalanine + Tyrosine	100	93	95	-	1 1 1	95

In bold: based on experiments with weaned piglets

	Updated recommendations	Variation in ratios in reviewed literature
	recommendations	interactive
Methionine ^{1,4}	33	NA^1
Methionine + Cysteine ⁴	60	54-73
Threonine ⁴	65	65-73
Tryptophan ⁴	20	17-26
Isoleucine ²	52	48-54
Valine	67	62-81
Leucine	100	80-111
Histidine	30	27-33
Tyrosine	40	NA ³
Phenylalanine	54	NA ³

¹Based on the advice of a minimum ratio of methionine to methionine+cysteine of 55%

High variation related to

- Statistical model
- Response parameter

e.g. Clarck et al. best fitting model for valine

63 % for ADG, based on linear plateau model 72 % for G:F, based on quadratic model 74% for ADFI, based on quadratic model

²In diets without blood products (non-excess of leucine)

³To the best of our knowledge, the study of Gloaguen et al. (2014b) is the only dose-response requirement study conducted for tyrosine and phenylalanine.

⁴Under poor health conditions, the amino acid requirement might be higher

	Updated	Variation in ratios in reviewed
	recommendations	literature
Methionine ^{1,4}	33	NA^1
Methionine + Cysteine ⁴	60	54-73
Threonine ⁴	65	65-73
Tryptophan ⁴	20	17-26
Isoleucine ²	52	48-54
Valine	67	62-81
Leucine	100	80-111
Histidine	30	27-33
Tyrosine	40	NA ³
Phenylalanine	54	NA ³

¹Based on the advice of a minimum ratio of methionine to methionine+cysteine of 55%

	BSAS (2003)	NRC (2012)	,	Gloaguen et al. (2013b)
	UK	USA	DK	FR
Methionine + Cysteine	59	55	54	60
Threonine	65	59	62	65
Tryptophan	19	16	21	22
Isoleucine	58	51	46-48	52
Valine	70	63	62-64	70
Leucine	100	100	86-90	101
Histidine	34	34	28-29	31
Phenylalanine + Tyrosine	100	93	95	-

- Other approach, not based on traditional dose-response studies with EAA as function of lysine
- Recommendation (risk for diarrhea, economic optimum)
- Based on recent studies, have not yet been published in peer-reviewed journals

²In diets without blood products (non-excess of leucine)

³To the best of our knowledge, the study of Gloaguen et al. (2014b) is the only dose-response requirement study conducted for tyrosine and phenylalanine.

⁴Under poor health conditions, the amino acid requirement might be higher

Outline

- Background
- Requirement of SID lysine (meta-analysis)
- Updated recommendations for SID lysine
- Requirement (literature review) and updated recommendations for SID EAA other than lysine
- Conclusions and future research perspectives

Conclusions

- The SID lysine requirement for maximal growth performance seems higher than the level tested in most dose-response studies (> 1.3 g SID Lys/MJ NE)
- Lysine levels (recommendations) should be considered in relation to crude protein levels
- Recommendations for SID EAA other than Lys are similar to most current recommendations, with exception of the Danish recommendations

Future research perspectives

- Determine SID lysine requirement in doseresponse studies using a higher SID lysine range
- Determine optimal SID lysine to SID CP ratio

 Requirements versus recommendations including health, environment and economic considerations

Thank you

Uitvoerenden:

Sophie Goethals, Sam Millet

Jordi Rijpert, Wouter Spek, Paul Bikker

Ad hoc groep:

Jan Fledderus, Mario van Erp, Nestor Gutierrez Cespedes

